\(\int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx\) [2098]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 148 \[ \int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx=-\frac {2 (b d-a e)^2 \sqrt {a^2+2 a b x+b^2 x^2}}{3 e^3 (a+b x) (d+e x)^{3/2}}+\frac {4 b (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}{e^3 (a+b x) \sqrt {d+e x}}+\frac {2 b^2 \sqrt {d+e x} \sqrt {a^2+2 a b x+b^2 x^2}}{e^3 (a+b x)} \]

[Out]

-2/3*(-a*e+b*d)^2*((b*x+a)^2)^(1/2)/e^3/(b*x+a)/(e*x+d)^(3/2)+4*b*(-a*e+b*d)*((b*x+a)^2)^(1/2)/e^3/(b*x+a)/(e*
x+d)^(1/2)+2*b^2*(e*x+d)^(1/2)*((b*x+a)^2)^(1/2)/e^3/(b*x+a)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {784, 21, 45} \[ \int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx=\frac {2 b^2 \sqrt {a^2+2 a b x+b^2 x^2} \sqrt {d+e x}}{e^3 (a+b x)}+\frac {4 b \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)}{e^3 (a+b x) \sqrt {d+e x}}-\frac {2 \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)^2}{3 e^3 (a+b x) (d+e x)^{3/2}} \]

[In]

Int[((a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(d + e*x)^(5/2),x]

[Out]

(-2*(b*d - a*e)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(3*e^3*(a + b*x)*(d + e*x)^(3/2)) + (4*b*(b*d - a*e)*Sqrt[a^2
 + 2*a*b*x + b^2*x^2])/(e^3*(a + b*x)*Sqrt[d + e*x]) + (2*b^2*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^
3*(a + b*x))

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 784

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \frac {(a+b x) \left (a b+b^2 x\right )}{(d+e x)^{5/2}} \, dx}{a b+b^2 x} \\ & = \frac {\left (b \sqrt {a^2+2 a b x+b^2 x^2}\right ) \int \frac {(a+b x)^2}{(d+e x)^{5/2}} \, dx}{a b+b^2 x} \\ & = \frac {\left (b \sqrt {a^2+2 a b x+b^2 x^2}\right ) \int \left (\frac {(-b d+a e)^2}{e^2 (d+e x)^{5/2}}-\frac {2 b (b d-a e)}{e^2 (d+e x)^{3/2}}+\frac {b^2}{e^2 \sqrt {d+e x}}\right ) \, dx}{a b+b^2 x} \\ & = -\frac {2 (b d-a e)^2 \sqrt {a^2+2 a b x+b^2 x^2}}{3 e^3 (a+b x) (d+e x)^{3/2}}+\frac {4 b (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}{e^3 (a+b x) \sqrt {d+e x}}+\frac {2 b^2 \sqrt {d+e x} \sqrt {a^2+2 a b x+b^2 x^2}}{e^3 (a+b x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.53 \[ \int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx=-\frac {2 \sqrt {(a+b x)^2} \left (a^2 e^2+2 a b e (2 d+3 e x)-b^2 \left (8 d^2+12 d e x+3 e^2 x^2\right )\right )}{3 e^3 (a+b x) (d+e x)^{3/2}} \]

[In]

Integrate[((a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(d + e*x)^(5/2),x]

[Out]

(-2*Sqrt[(a + b*x)^2]*(a^2*e^2 + 2*a*b*e*(2*d + 3*e*x) - b^2*(8*d^2 + 12*d*e*x + 3*e^2*x^2)))/(3*e^3*(a + b*x)
*(d + e*x)^(3/2))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 2.

Time = 0.26 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.46

method result size
default \(-\frac {2 \,\operatorname {csgn}\left (b x +a \right ) \left (-3 b^{2} e^{2} x^{2}+6 a b \,e^{2} x -12 b^{2} d e x +e^{2} a^{2}+4 a b d e -8 b^{2} d^{2}\right )}{3 e^{3} \left (e x +d \right )^{\frac {3}{2}}}\) \(68\)
gosper \(-\frac {2 \left (-3 b^{2} e^{2} x^{2}+6 a b \,e^{2} x -12 b^{2} d e x +e^{2} a^{2}+4 a b d e -8 b^{2} d^{2}\right ) \sqrt {\left (b x +a \right )^{2}}}{3 \left (e x +d \right )^{\frac {3}{2}} e^{3} \left (b x +a \right )}\) \(78\)
risch \(\frac {2 b^{2} \sqrt {e x +d}\, \sqrt {\left (b x +a \right )^{2}}}{e^{3} \left (b x +a \right )}-\frac {2 \left (6 b e x +a e +5 b d \right ) \left (a e -b d \right ) \sqrt {\left (b x +a \right )^{2}}}{3 e^{3} \left (e x +d \right )^{\frac {3}{2}} \left (b x +a \right )}\) \(82\)

[In]

int((b*x+a)*((b*x+a)^2)^(1/2)/(e*x+d)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*csgn(b*x+a)*(-3*b^2*e^2*x^2+6*a*b*e^2*x-12*b^2*d*e*x+a^2*e^2+4*a*b*d*e-8*b^2*d^2)/e^3/(e*x+d)^(3/2)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.57 \[ \int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx=\frac {2 \, {\left (3 \, b^{2} e^{2} x^{2} + 8 \, b^{2} d^{2} - 4 \, a b d e - a^{2} e^{2} + 6 \, {\left (2 \, b^{2} d e - a b e^{2}\right )} x\right )} \sqrt {e x + d}}{3 \, {\left (e^{5} x^{2} + 2 \, d e^{4} x + d^{2} e^{3}\right )}} \]

[In]

integrate((b*x+a)*((b*x+a)^2)^(1/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

2/3*(3*b^2*e^2*x^2 + 8*b^2*d^2 - 4*a*b*d*e - a^2*e^2 + 6*(2*b^2*d*e - a*b*e^2)*x)*sqrt(e*x + d)/(e^5*x^2 + 2*d
*e^4*x + d^2*e^3)

Sympy [F]

\[ \int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx=\int \frac {\left (a + b x\right ) \sqrt {\left (a + b x\right )^{2}}}{\left (d + e x\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate((b*x+a)*((b*x+a)**2)**(1/2)/(e*x+d)**(5/2),x)

[Out]

Integral((a + b*x)*sqrt((a + b*x)**2)/(d + e*x)**(5/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.65 \[ \int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx=-\frac {2 \, {\left (3 \, b e x + 2 \, b d + a e\right )} a}{3 \, {\left (e^{3} x + d e^{2}\right )} \sqrt {e x + d}} + \frac {2 \, {\left (3 \, b e^{2} x^{2} + 8 \, b d^{2} - 2 \, a d e + 3 \, {\left (4 \, b d e - a e^{2}\right )} x\right )} b}{3 \, {\left (e^{4} x + d e^{3}\right )} \sqrt {e x + d}} \]

[In]

integrate((b*x+a)*((b*x+a)^2)^(1/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

-2/3*(3*b*e*x + 2*b*d + a*e)*a/((e^3*x + d*e^2)*sqrt(e*x + d)) + 2/3*(3*b*e^2*x^2 + 8*b*d^2 - 2*a*d*e + 3*(4*b
*d*e - a*e^2)*x)*b/((e^4*x + d*e^3)*sqrt(e*x + d))

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.73 \[ \int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx=\frac {2 \, \sqrt {e x + d} b^{2} \mathrm {sgn}\left (b x + a\right )}{e^{3}} + \frac {2 \, {\left (6 \, {\left (e x + d\right )} b^{2} d \mathrm {sgn}\left (b x + a\right ) - b^{2} d^{2} \mathrm {sgn}\left (b x + a\right ) - 6 \, {\left (e x + d\right )} a b e \mathrm {sgn}\left (b x + a\right ) + 2 \, a b d e \mathrm {sgn}\left (b x + a\right ) - a^{2} e^{2} \mathrm {sgn}\left (b x + a\right )\right )}}{3 \, {\left (e x + d\right )}^{\frac {3}{2}} e^{3}} \]

[In]

integrate((b*x+a)*((b*x+a)^2)^(1/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

2*sqrt(e*x + d)*b^2*sgn(b*x + a)/e^3 + 2/3*(6*(e*x + d)*b^2*d*sgn(b*x + a) - b^2*d^2*sgn(b*x + a) - 6*(e*x + d
)*a*b*e*sgn(b*x + a) + 2*a*b*d*e*sgn(b*x + a) - a^2*e^2*sgn(b*x + a))/((e*x + d)^(3/2)*e^3)

Mupad [B] (verification not implemented)

Time = 11.55 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.85 \[ \int \frac {(a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx=-\frac {\sqrt {{\left (a+b\,x\right )}^2}\,\left (\frac {4\,x\,\left (a\,e-2\,b\,d\right )}{e^3}-\frac {2\,b\,x^2}{e^2}+\frac {2\,a^2\,e^2+8\,a\,b\,d\,e-16\,b^2\,d^2}{3\,b\,e^4}\right )}{x^2\,\sqrt {d+e\,x}+\frac {a\,d\,\sqrt {d+e\,x}}{b\,e}+\frac {x\,\left (3\,a\,e^4+3\,b\,d\,e^3\right )\,\sqrt {d+e\,x}}{3\,b\,e^4}} \]

[In]

int((((a + b*x)^2)^(1/2)*(a + b*x))/(d + e*x)^(5/2),x)

[Out]

-(((a + b*x)^2)^(1/2)*((4*x*(a*e - 2*b*d))/e^3 - (2*b*x^2)/e^2 + (2*a^2*e^2 - 16*b^2*d^2 + 8*a*b*d*e)/(3*b*e^4
)))/(x^2*(d + e*x)^(1/2) + (a*d*(d + e*x)^(1/2))/(b*e) + (x*(3*a*e^4 + 3*b*d*e^3)*(d + e*x)^(1/2))/(3*b*e^4))